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EQUATION OF STATE OF STRONGLY COUPLED PASMA MIXTURES*

Hugh E. DeWitt
University of California
Lawrence Livermore National Laboratory
Livermore, CA 94550

® Thermodynamic properties of strongly coupled (high density)
plasmas of mixtures of light elements have been obtained by
Monte Carlo simulations. For an assumed uniform charge
background the equation of state of ionic mixtures is a
simple extension of the one-component plasma EOS. More

. realistic electron screening effects are treated in linear
response theory and with an appropriate electron dielectric
function. Results have been obtained for the jonic pair
distribution functions, and for the electric microfield
distribution.

I. INTRODUCTION

The purpose of this paper is to give a short summary of current
understanding of the thermodynamic properties of strongly coupled Coulombic
systems and a few recent results. The state of matter described by the term
'strongly coupled plasma' is characterised as a partially or fully ionized
system in which the thermodynamic properties are largely dominated by strong
correlations induced by Coulomb interactions among the ions. Strongly coupled
plasmas include the partially ionized plasmas in magneto-hydrodynamic
generators, exploding wire experiments, laser-fusion compression experiments,
liquid metals, interiors of large gaseous planets, many stellar interiors,
white dwarf stars and neutron star crusts. For a more complete review of the
large body of research in this area of physics during the past two decades the

reader is referred to excellent review articles by Baus and Hansen1 and by

Ichimar.u.2

*Work performed under the auspices of the U.S. Department of Energy by

Lavrence Livermore National Laboratory under contract $w-7405-Eng~48.



The significant thermodynamic properties of these systems are largely
determined by the Coulomb interactions among ions. The Coulomb potential will
be modified by bound electron cores in the case of partially ionized plasmas
and in general by the screening effect of the free electrons. Since the
nuclear masses of the ions are large, the ion motion is, fo a large extent,
classical in most strongly-coupled plasmas. By contrast, the small mass of
the electrons leads to the onset of Fermi degeneracy for the electrons at
sufficiently high density so that the electron description is usually guantum
mechanical. 8Since the electron Fermi energy is normally far larger than the
average ion kinetic energy, kT, the electrons often become somewhat decoupled
from the ions. The role of the electrons is to provide sufficently high
pressure due to Fermi degeneracy to prevent the plasma from collapsing and to
provide negative charge to neutralize the ions. Hence, a strongly coupled
plasma may be regarded as a two-fluid mixture: a fluid of classical positive
charges moving in the neutralizing electron fluid. The two fluids interact
with each other mainly by means of the electron screening effect due to
accumulation of fast moving electrons around each ion. Most of the
computations of thermodynamic properties to date have made the additional
approximation of regarding the electrons as a continuous fluid so that
classical statistical-mechanical methods may be used for calculation of the
ion-ion correlations. These methods use brute force numerical simulation of a
few hundred ions by Monte Carlo or molecular dynamics procedures, or with

appropriate integral equations from liquid state theory usually various forms

of the hypernetted chain (HNC) equation.

Strongly coupled plasmas are mainly characterized by the classical
Coulomb coupling parameter:
2 2

Z* e -
= TakT (1)
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where 2* is nuclear charge in the case of bare nucleus or the effective ionic
charge in the case of a partially ionized plasma. a is the ion sphere radius,

and pi = Ni/v is the ion number density. The concept of Debye length is



not normally useful for description of a strongly coupled plasma. Electron

screening for degenerate electrons requires a second parameter:

r, = a/ag (2)

where ae is the electron ion sphere radius (also called the Wigner-Seitz

radius) and pe = z*pi. For ionic mixtures the parameter list will

require the charge number of each ionic species and the chemical composition.

For partially ionized plasmas additional parameters will be required for

characterizing the bound electrons forming the ionic cores.

A summary of strongly coupled plasma properties for various possible

systems could be given in terms of the following sequence of complexity:

1)

2)

3)

Classical Point Ions in a Uniform Background (OCP). This system has
been the subject of an enormous amount of numerical and analytical
study. As a simple mathematical model it plays the same role in
strongly coupled plasma physics as the hypothetical hard-sphere
fluid plays in the theory of neutral liquids such as liquid argon.
The OCP is approximated in nature in only extreme density

astronomical objects, white dwarf stars and neutron stars.

Mixtures of Point Tons in a Uniform Background. This is essentially
the OCP but with mixture of different nuclear charges. Simulations

on this system give the means of testing simple mixing rules.

Point Ions in a Responding Background. In white dwarf stars the
electron Fermi energy is relativistic and so large that the elecrons
are well approximated by a uniform background. At lower densities
as in liquid metals the electrons are degenerate but cluster around
each ion in a manner that in some cases can be approximated by
linear response theory and an appropriate electron dielectric

function. This description applies, for example, to the interior of



the planet Jupiter for which the ionized hydrogen is a strongly

coupled plasma with I' ™ 30 and r, ~ L,

4) Partially Ionized Plasmas. Exampies are found in magneto-hydro-

| dynamic drivers, and laser-fusion experiments. The ion-ion potential
now deviates signficantly from the Coulomb potential at short
distances as the ion cores come into contact. simple'forms of the
effective potentials for various ionization states that reproduce
known ionic energy levels are available for use in numerical
simulations and integral equations.3 The effective ionic charge, -

%*

%4
must be obtained first with a suitable ionization equilibrium

= zi - Ni where Ni is the number of bound electrons,

calculation.

The feature common to all the diverse systems described as strongly
coupled plasmas is liquid-like behaviour in contrast to a gas-like description
of weakly coupled plasmas. The strong correlations induced by the Coulomb
interactions cause the short range order that shows up as oscillations in the
_ion-ion pair distribution function. At extreme densities as possibly in white
dwarf stars and certainly for neturon star crusts the plasma goes'into a

crystalline state.
II. THE ONE~-COMPONENT PLASMA (OCP)

Before discussing the mathematical abstraction called the OCP, it is
useful to note that strongly coupled plasmas have a two-component Hamiltonian

and that the total internal energy is given by a canonical ensemble average of

= [ 4 s o >

where Ne = ZN, eF is the electron Fermi energy, and U is the average

Coulombic interaction energy:



. 2 N.N 2
N 2.Z2.e i e 2Z2.e
-U/N"T=EJ§TE ! I:-xl - T
: Fh 3 Bt S i,a “iT'g
(4)
N
e e
+ lg -z, 1
a<p a B

When the discrete electrons are replaced with a uniform background, ©

simplifies greatly to:

1 N ziz.e2
U/NkT = kT < Z T——E——T + background >
1<y 175
(5)
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where £(I') indicates the function of the single parameter I' which
completely describes the thermodynamics of the system. In the weakly coupled
or low density limit the energy fuction is given exactly by the Debye-Hiickel

result:

£(T) = - %_- -'Jk-g- r I'<<1 (6)
4ﬂpAD
< .73 ;32
2

which is also the exact lower bound on the energy.4 Deviations from the

Debye results were first calculated using the cluster expansion for plasmas
due to Abe.5 Later it was found that the Abe expansion was embedded in the
framework of the HNC equation which can now be used to give the function to

adeguate accuracy for I’ < l.6 At approximately I' = 1, that is,



where the average Coulomb energy of an ion, zzez/a, is approximately kT,

the total Coulombic energy of the sytem may be divided into two parts:

u/nkt = (U (0) + U, (P, 1)) /NKT

: (7
= al' + g(T)

where U° is a static energy of the OCP fluid that is approximately the

Madelung energy of a lattice of ions, and U_, is the thermal energy of the

ions in this liquid-like system of charges :2th short range order. The
constant A in Eq. 7 may be estimated from an elementary approach, the ion
sphere model, which gives:

(U/NKT) | =-2T (8)

ion-sphere 10 _

Equation 8 is also the exact Lieb-Narnhofer lower bound on the energy.7 The
Madelung constant for the lowest energy Coulomb lattice, the bcc lattice, is
Abcc = - 0.895929, which is about .45% above the Lieb-Narnhofer lower
bound. Presumably the bce lattice is the true lowest possible energy of the
OCP in the I' > @ 1limit. Most simple theories of the OCP, e.g., the
ion-sphere model, give A = - 9/10 and the numerical solution of the HNC

equation comes very close to this value,

Beginning with the pioneering work of Bruéh, sahlin, and Teller8 in
1966, the OCP has been studied in detail in the strongly coupled region, T
> 1, by 'nume:ical experiments', numerical simulation by means of Monte
Carlo or molecular dynamics. Readers should consult Refs. 1 and 2 for the
earlier work. The most recent and most accurate Monte Carlo study was a joint
Livermore and Los Alamos collaboration using Cray computers.g'10 ‘The total
interaction energy function, £('), is shown schematically in Fig. 1 which
indicates the OCP fluid and OCP solid phases. The actual change in the
internal energy at the phase transition is quite small, only about .5% of the
total enegy. The thermal energy of the two phases is shown on Fig. 2 with
U° defined to be the bec lattice value. At the phase transition, which
current data indicates at I' = 178, the thermal energy is only 1.5% of the

total energy so that extremely long and time~consuming Monte Carlo simulations



are required to give reasonable accuracy for the fluid state. In the recent
study we used up to 1024 particles in the simulation and computed the average
energy from as many as 40 million configurations. The total energies thus
obtained are believed to be accurate to a few parts.in 105. Hence, the
thermal energies are believed to be known to about ,1%. The question of
accufacy is complicated by possible N dependence in the simulations, but
empirically we found10 that the number dependent correction was O(I'/N) and

small enough to give a good result for the N+ o limit.

11

An earlier analysis of Monte Carlo simulation data for the OCP

indicated that the thermal energy, U E/NkT' behaved as a low power of T,
probably Pl/4. DeWitt and Rosenfeld™™ using a variational hard-sphere
model and the entropy obtained from the virial pressure of the Percus-Yevick
equaton, found that OCP fluid energy could be expressed in an expansion of
1/4

powers of T :

1/4 1/4 .

_9 8 V4 _L, .1, 18

U/NkT=-loI'+(9) T -2+(80)(r) + o s (9)
The most exact OCP Monte Carlo data obtained recently10 is consistent with

this analytic form. The fit to the data is:

U/N = - 0.8977 T + 0.9594 I'Y* _ 0.8149 (10)
+0.1896 ™4 4+ . ..

The pressure is obtained exactly for the OCP from the virial theorem as:

Be/p = 3 BU/N - (11)

W

Equation 10 is the currently best available equation of state for the oCP. It
is valié for the OCP fluid phase from approximately I' = .8 to the freezing
value of I' at approximately 180. It also seems to fit well the small amount
of Monte Carlo data so far obtained for the metastable OCP fluid for
temperatures below the freezing temperature, i.e., for I' > 180. For the

OCP solid phase the energy was found to be that of the expected harmonic solid

with a small anharmonic contribution:



Bu/N = - 0.895929 T + -3- + 32252+, .. (12)
The actual freezing value of I' is difficult to locate precisely. The
procedure used is to obtain the Helmholtz free enrgy for each phase using Egs.
10 and 12. Thus, the Helmholtz free energy for the fluid phase is obtained by
integrating Eq. 10: '

g .
Besn = [ (Bu@By/m) 9—27 + BF(B,)/N
Bl
ro (13)
=g %qsw')+ewﬂ

1

and thé integration constant is obtained by numerical integration fromT = 0
to Pl = 1. A similar calculation of the Helmholtz free energy of th solid
phase uses Eq. 12 and a lattice vibration constant for the bec lattice (see
Ref. 9). The location of the freezing transition is obtained from the
crossing point of the fluid and solid free energies. Estimates of the
freezing value of I' obtained this way have ranged from I' © 125 (Ref. 8)

tol = 178 £ 1 as our best current estimate.

The pure HNC equation was found in 1974 to be a moderately good
representation of the OCP but gave an incorrect result for the thermal
energy. Since the Monte Carlo simulations are very long and expensive, there
has been considerable challenge to theorists to improve the HNC equation in
such a manner as to reproduce as accurately as possible the Monte Carlo data.
The relevant approxiamtions may be seen from the cluster diagrams for the pair

distribution function and from the Ornstein-Zenicke equation:

‘g(r) = exp [-Bu(r) + N(r) - B(r)]
h(r) S gir) ~ 1 =c() + pId3r' ce(r)'h (lr~.~ rtl) ] (14)
= c(r) + N(r)

N(r) is the sum of all convolution diagrams, and B(r) is the sum of the

so-called bridge diagrams, i.e., those which have no convolutions. The HNC



equation is obtained with B(r) = 0. For the oOCP, i.é;, the Coulomb potential,
Bu(r) = I'/x. N96 solved the equation with an interactive method to

great accuracy for g(r), and the interaction energy was obtained to eight
figure accuracy from Eq. 5. A comparison of the Monte Carlo results for g(r)
with the HNC g(r) suggested an appropriate form for the bridge graph

function. Rosenfeld and Ashcroft showed that the bridge function for the OCP
and other simple solids could be well approximated by a hard sphere form
obtained from the analytic solution of the Percus-Yevick equation.13 The
appropriate value of the effective hard sphere required for the bridge
function is obtained by imposing the requirement 6f thermodynamic
consistency. We have recently solved this modified HNC equation, and found
that the g(r) results in the energy integral agree with the Monte Carlo OCP
energies to five figures for all values of I' in the fluid phase.14 Figure

3 shows the comparison of the modified HNC g(r) solution with the Monte Carlo
g(r) for I' = 170. There is slight deviation from the MC data near the first
peak and the first valley which indicates that the hard sphere bridge graph is
slightly incorrect. Nevertheless, the modified HNC equation is sufficiently
accurate that it can be used for practical calculations of thermodynamic
quantities for other strongly coupled plasmas in a small fraction of the time

required for the Monte Carlo simulations.

III. EQUATION OF STATE OF BINARY IONIC MIXTURES

The discussion in this section may be applied to any number of different
point nuclear charges in a responding electron background, but for gimplicity
‘we consider here two nuclear components of charge z1 and z2 with chemical

compositions:
x, = Nl/(N1 + Nz) ¢ xz = N2/Nl + Nz)

The Helmholtz free energy for the mixture may be expressed as a function of a

number of parameters in the following manner:

F,/NKT = £, (zl,xl.zz.xz.f'o.rs) (15)
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where fm denotes the free energy function for m ionic components and

Fo = ez/akT . _ ' (16)

The problem is to £ind a simple mixing rule which as far as possible requires
only a knowledge of fl' the free energy function for the OoCP. This is
possible in the absence of electron screening, i,e., when rs = 0, We first

note that given a free energy function as state in Egq. 15 that the energy is

obtained from a temperature derivative:

afm
U/NKT = I'o 57 (17)
o
and the pressure is obtained by differentiation with respect to volume:
af
1 m af
PV/NKT = 3 {r, T, - £, ars} (18)

In the absence of electron screening, Eq. 18 reduces to th virial theorem

result.

A large amount of numerical simulation data is available from Monte Carlo
runs done at Livermore and Los Alamos for binary ionic mixtures both with and
without electron screening. Hansen and his colleagues in Paris have also
reported extensive results on mixtures.l5 We first note that the ion sphere

model gives an elementary extension of the OCP reseult, Eq. 8:

9 T5/3 -1/3
(U/NKT) 1y vture = ~ 10 2 Z To (19)

where

.—s s s ’ . (20)

Our simulations in strong coupling (l’° >> 1) for a wide variety of

mixtures and of charge numbers as far apart as z1 = 1 and z2 = 10 amply
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confirmed the correctness of the ion sphere mixing rule for the binéry mixture
fluid static energy, the generalization of Uo in BEgq. 7. As in the OCP case,
the mixture thermal energy is less certain. Hansen, gg_gl.s suggested the

'linear law' as a suitable fit to their Monte Carlo and BNC mixture data:
- 5/3 <1/3 5/3=1/3
FI/NkT xlfl (2, 2 I‘o) + xzfl (z, "2 I‘o) (21)

where fl is the OCP free energy function as cobtaned from EQ. 13 (see Ref.
11). The same mixing rule clearly applies to the internal energy and the
pressure using Eqs. 10 and 11. This mixing rule fairly well predicts the

Monte Carlo mixture results that have been generated to date for

as might be expected since this rule reproduces the ion--sphere model result.
It is clear, however, that Eq. 21 cannot be a completely general result for
mixtures of all degree of coupling since it is incorrect in the weak coupling

limit for which the Debye-Huckel result is:

3/2

_ /37 73 3/2
Fp/NkT = -3 () T, (22)

Using arguments based on the known lower bounds for the free energy,
i.e., the Debye results for weak coupling and the Lieb-Narnhofer results for

strong coupling, Rosenfeld has obtained mixing rule which satisfies both

limits':16

- Z 2 =-1/3

2 1 2°3%
F_/Nkr = 2 {x. 2. £ ( Iy
I/ —"2 1’171 E ()

3z
(23)
zzz/3 22 71/3
+ xzzzf, ( }}
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In strong coupling the Rosenfeld mixing rule, Eq. 23, satisfies our available
Monte Carlo mixture data slightly less well than the linear law, Eq. 21.
However, the inherent errors in the Monte Carlo data due to limited length of
the simulations and the number dependence does not make it possible as yet to
definitely decide whether Eq. 21 is to be preferred over Eq. 23. In the '
intermediate coupling regime, Po < 1, Eq. 23 is probably more accurate

since it tends to the correct limiting result in weak coupling. For
calculations of the screening enhancement of the thermonuclear reaction rates
in stellar interiorsl7 the Rosenfeld mixing rule is probably more

appropriate than the linear law.

For the situation with a responding background of electtrons the mixture
probem is made more complicated by the rg dependence. The approach taken to
analyze the Monte Carlo simulations in which the electron background is
treated as a polarizable fluid described by linear response theory has been to

assume a model free energy of the form:

- »
Fo/NkT = AT+ B0/ 4+ ol + D _ (24)

(Existing data does not justify the inclusion of a P-l/4 term at this

time.) For the OCP, Eq. 24 would simply be the function fl from Eg. 13, In
general the coefficients A,B,C, and D are treated as functions of the charge
numbers, the chemical compositions, an r,. In linear response theory it is
easily demonstrated that the screening correcton to the OCP and the binary
mixture results in a uniform background, Eg. 21 or 23, begins with a linear
term in Lo Initial results for screening corrections to the ionized
hydrogen in Jupiter and for fully ionized hydrogen-helium mixtures were given
for a large number of simulations from Lvermore in 1976.18 The Lindﬁard
dielectric function was used for the description of electron screening. our
more recent Monte Carlo mixture simulations on hydrogen and helium mixtures
used longer runs and values of r, up to about 1.5.19 We found that at
least for the mixture static energy term, i.e., the coefficient A, that a
quadratic dependence on rs was present. The coefficients of powers of

ro in Bg. 24 were written as:
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- 5/3 5/3 2
A .-al[xlz1 + x222 1 + rs[ale + a3x2] + r, [_ale + azle (25)
_ 5/12 5/12
B = bl[xlz1 + xzz2 ] + rs[bzx1 + b3x2] (26)
C=c¢c +r, [xlc2 + x203] (27)
D=4, -c.X n(z/2.073 + ¢ [a.x. + 4,X.] (28)
1 172 2’71 s 3 472

1

The unscreened coefficients in Egs. 25 to 28 were taken'from a f£fit to oCP
data, and the powers of zl and z2 are those obtained from the ion-sphere
model and the linear law, Eg. 21. With these first four coefficients
determined, we still had 10 remaining coefficients to f£it to our Monte Carlo
mixture energy and pressure data. This was done with a least-squares
procedure. For each run we calculated the model value of the interaction
energy and the_pressuie (from Egs. 17 and 18), and then computed the residuals
between the model values and the Monte Carlo values. The residuals were
squared, summed, and the 10 parameters were adjusted until the sum was

minimized. The results are shown in Table I.

TABLE I. Values of coefficients in the model interaction free energy, Eqg. 24.

adl = 0,89461 a, = 0.04663 ag = 0.46312
a; = ~-0.00479 ag = ~0.04909
b1 = 3,.,26591 b2 = -1.7441 b3 = 2.71013
¢, = -0.50123 c, = -0.17267 ey = 1.47087
dl = -2,81630 d3 = 1.13216 64 = -2,31857

The r_ dependence in this free energy model is more general than the
1976 model because of the presence of te rz terms in A(rs). This is
essential to properly fit the Monte Carlo data for the pressure. Note that

a, and a5 are small compared with a, and 2y the coefficients for the

term linear in r . The primary effect of the electron screening is to
s
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increase the magnitude of A(rs). Since A(rs) is negative as a consequence
of the electron background, the 'static' energy of the dense plasmas is '
lowered significantly for rs “ 1. The physical reason for this lowered
fluid energy is the increased density of free electrons clustered around each
ionic nucleus. The pressure change due to screenin§ is very small since the
pressure is little affected by the screening cloud of electrons surrounding
each ion. Indeed, since r, Po in the free energy model is independent

of density, it is apparent that this term will give no contribution to the
pressure. Consequently the actual change of pressure due to electron
screening is largely determined by the r: terms. This éressure change is

small and positive.
IV. ELECTRIC MICROFIELD IN STROﬁGLY COUPLED PLASMAS

The Monte Carlo code used to simulate the energy and pressure of strongly
coupled plasmas can also generate the electric microfield distribution around
a given ion due to neighboring ions. Such microfields are needed for the
calculation of spectral line shapes due to the Stark effect for higﬁ 2
temperature laser-induced plasmas. For temperatures in the hundreds of eV
range, highly stripped neon and argon plasmas can be fproduced in which the
eelectrons are non~degenerate. The ion-ion potential in this situtation can

be described with a screened Coulomb form and a Debye length due to electrons:

2 1/2
05000 = B T oe, 2y, = (5
4Te n
e
n_ is the electron number density and Z is the effective charge of the
partially stripped ion. To compute the electric microfield for plasmas in
these conditons the Monte Carlo code was modified slightly by inserting the

high temperature Debye electron dielectric function:

2 .
€(k) = 1 + 1/(kADe) | (30)

Monte Carlo runs with 50 charges an 200,000 configurations were sufficient to
give accurate microfield sitrbutions along with the usual U/NKT, PV/NKT and

g(r) results.
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Detailed comparisone of the MOnte Carlo microfields with recent
microfielﬁ theories are given in a recent report.20 Figure 4 shows the
Monte Carlo microfield for hydrogenic neon with I' = 4,32. The detailed
many-body treatment of Tighe and Hooper21 and also the simpler Independent
Perturber (IP) Model compare favorably with th Monte Carlo microfield which
may be regarded as a 'numerical experimental result'. This kind of comparison
indicates that the numerical simulation of microfields plays a very useful
role in providing a guide for developing better theoretical calculatioﬁs of

microfield distributions for future experiments.

HED:mpd:0678A
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Figure Captions

Schematic representation of the OCP Coulombic interaction erngy for
the fludid and solid phases. The two curves are nearly straight
lines because of th dominance of the static energy.

Thermal energy for both the fluid and solid OCP phases. The error
bars are hardly visible at this scale.

g(r) for the OCP fluid at I' = 170. Solid line is the solution of
the modified HNC equation, and x's are representative Monte Carlo

values.

A comparison of the microfield distributions calculated with IP and

TH methods with Monte Carlo results (MC). All ionic consistuents
carry ‘a charge of +9. The dimensionless field variable is scaled in

terms of the electron sphere radius.
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